SALT COLLEGE OF APPLIED ARTS AND TECHNOLOGY

SALT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title : AC Circuits and Machines

Course No.: ELR109

Program: Electrical / Electronics / Instrumentation Technician
Semester: Two
Authors): A. Gooderham, 7592554 ext 581
Date: Jan. 1998
Previous
Outline Dated: Jan. 1996

Approved:

Copyright © 1997 The Salt College of Applied Arts \& Technology Reproduction of this document by any means, in whole or in part, without the prior written permission of The Sault College of Applied Arts \& Technology is prohibited. For additional information, please contact Kitty DeRosario, Dean, School of Trades \& Technology, (705) 759-2554, Ext. 642.

Course Name: AC Circuits and Machines
 Course No.: ELR109

TOTAL CREDITS: 4

PREREQUISITES: ELR 100

COURSE LENGTH: 16 wks

TOTAL CREDIT HOURS: 5

I. COURSE DESCRIPTION

An analytical study of series and parallel, and series-parallel circuits, impedance networks, network theorems and poly-phase circuits. Fundamentals of DC circuit analysis is followed by AC analysis techniques. An overview of the basic construction and operation of DC and AC machines completes the course content.

II. TOPICS TO BE COVERED:

1. DC networks (review)
2. Magnetism
3. Inductance
4. Capacitance
5. RL \& RC DC Circuits
6. AC fundamentals (review)
7. Phasors \& Complex Numbers
8. RL , RC \& RLC AC Circuits, Resonance \& Filters
9. Series-Parallel AC Circuits
10.Power in AC Circuits
11.AC Networks
12.Three-Phase AC Systems
13.Transformers
14.DC Motor/Generators
15.Three-Phase AC Motors (if time permits)

Course Name: AC Circuits and Machines Course No.:
 ELR109

III. LEARNING OUTCOMES AND ELEMENTS OF PERFORMANCE:

A. Learning Outcomes:

Upon successful completion of this course the student will be able to:

1. Analyse fundamental dc circuits
2. Analyse fundamental single-phase ac circuits
3. Analyse fundamental three-phase ac circuits
4. Describe basic parts and operation of dc and ac machines

B. Learning Outcomes with Elements of Performance:

Upon successful completion of this course, the student will demonstrate the ability to:

1. Determine the impedance and operation of single-phase AC circuits using phasors and complex math.

Potential elements of the performance:

- Completion of complex math questions including the j operator
- Completion of basic trigonometry questions
- Completion of polar and rectangular conversions
- Analysis of single-phase circuit operation using complex math, to find impedance(s), voltage and current values
- Complete formal test

2. Determine magnetic flux properties, uses in dc machines and other electrical/electronic devices, and describe the concept of self-inductance

Course Name: AC Circuits and Machines
 Course No.: ELR109

Potential elements of the performance:

- Determine the direction of magnetic flux present as a result of current flow in a conductor
- Determine the direction of magnetic flux present as a result of current flow in a coil
- Determine the direction of rotation of a simple dc motor
- Determine the direction of current flow in a simple dc generator
- Complete test

3. Analyse a DC circuit containing inductors or capacitors and resistors, to determine charge and discharge characteristics

Potential elements of the performance:

- Completion of RL and RC cct questions regarding time constants
- Completion of RL and RC cct questions requiring the solution of the time for threshold voltage or current achievement
- Completion of test

4. Analyse a three-phase cct with respect to type (Delta or Wye) and solve for both line and phase voltages and currents.

Potential elements of the performance:

- Completion of three-phase cct questions regarding line and phase values
- Completion of three-phase cct questions having combinations of delta and wye generators and impedance loads
- Completion of test

5. Describe the basic operation of a dc motor/generator and identify the construction and parts of both ac and dc machines

Potential elements of the performance:

- Completion of dc machine diagrams showing flux fields, main fields and rotation

Course Name: AC Circuits and Machines
 Course No.: ELR109

- Completion of dc machine diagrams identifying parts of the machine
- Description of dc machine operation and characteristics
- Completion of test

IV. REQUIRED STUDENT RESOURCES:

\bullet Principles of Electric Circuits, $5^{\text {th }}$ Ed. , by Floyd

V. METHODS OF EVALUATION:

The following Grading System will be used:

$$
\begin{aligned}
\mathrm{A}+ & =90 \%-100 \% \\
\mathrm{~A} & =80 \%-89 \% \\
\mathrm{~B} & =70 \%-79 \% \\
\mathrm{C} & =55 \%-69 \%
\end{aligned}
$$

$$
\mathrm{R}=\text { less than } 55 \% \text { (Repeat Course) }
$$

$$
\mathrm{X}=\text { Temporary Grade as per College Policy }
$$

Three Tests @ 33.33 \% each : TOTAL 100\%

VI. SPECIAL NOTES:

1. The Instructor reserves the right to modify the course as is deemed necessary to meet the needs of the students.
2. Students with special needs (Physical Limitations, Visual/Hearing Impairments etc.) are encouraged to discuss confidentially, required accommodations with the instructor and/or contact the Special Needs Office, Room E1204, Extension 493, 717 or 491.
3. If a student misses a test or surprise quiz (maximum 5% of final grade) without contacting the instructor, the Dean's office or the switchboard prior to the test or quiz, a mark of zero will be granted without a re-write option.

VII. PRIOR LEARNING ASSESSMENT:

Students who wish to apply for advanced credit in this course, should consult with the Professor.

ELR109 Course Outline Review

The following students attended the class session in which the course outline was reviewed and have been notified that a copy of the outline is listed on the "scorpion" server for their perusal. Should a hard copy be preferred by a student, a printout may be taken from that location.

